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LABSEPARAl?lON, S mlrrY, AND OTEER PROPERTIES OF

coMl?REssI13mIm41mR BOUNDARY IAYER Wl?rH

‘ PRESSURE GRADIENT AND HEAT TRANSFER

By Morris Morduchow and Richard G. Grape

A theoretical study is made of the effect of pressure gradient,
wall temperature, and Mach number on kminar boundary-layer character-
istics and, in particular, on the sldn-friction and heat-transfer
coefficients, on the separation point in an adverse pressure gradient,
on the wallltemperature required for complete stabilization of the
bninar boundary layer, and on the minimum critical Reynolds numiberfor
laminar stabili~. The Prandtl nuiber is assumed to be unity and the
coefficient of viscosi~ is assmed to be proportional to the tempera-
ture, with a factor arising from the Sutherland relation. A simple and
accurate method of locating the separation point in a compressible flow
with heat transfer is developed. Numerical examplq to illustrate the
results in detail are given throughout. I

INTRODUCTION?

The purpose of the present investigation is to determine theoreti-
cally the nature of the lsminar boundary layer in compressible flow with
heat.tiansfer and pressure gradient. In particular, the effect of
pressure gradient (favorable and adverse), wall temperature, and Mwh
number on the boundary-layer characteristics are investigated. such an
investigation has already been made in reference 1 on the basis of
fourth-degree veloci@ and stagnation-enthalpyprofiles, in conjunction
with two different boundary-layer thiclmesses (a dynamical and a thermal
boundary-layer thiclmess). In contrast with the present study, the
effect of normal fluid injection at the wall was included in reference 1,
but the stabili~ of the boundary &er was not investigated therein.
The present investigation is based on the more accurate methcd of calcu:
lating boundary-layer properties as develaped in reference 2, where
sixth-degree velocity and seventh-degree stagnation-enthal~ profiles
are applied in conjunction with a single boundary-layer thickness, with
the thermal boundary-layer thickness replaced by an additional param-
eter bl in the stagnation-enthal~ profile.

——— .-— -— .— ———. ——.——. .. .
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Ih the first section of this study, skin-friction and heat-transfer
characteristicsare investigated, especially with respect to the effect
of wall temperature, pressure gradient, @ Mach nuuiber. The analysis
is carried out first b general terms and then ilkstiatedby a numeri-
cal example for the supersonic flow over a thin airfoil, for which the
pressure gradient is everywhere favorable (negative). In the next
section, a simple and ordinarily sufficiently accurate me%hcilof calcu-
lating the separation point in an adverse pressure gradient in subsonic
or supersonic flowl over a waKl at a given uniform temperature is devel-
oped. The method, based on the special use of a seventh-degreeprofile
to satisfy an additional boundary condition at the separation point
(first suggested in ref. 3), is essentially an extension of the methcd
developed for zero heat transfer in reference 4, where a numerical
example indicated excellent agreement with exact results. with this
methcd, the effect of wall temperature and Mach number on the separation ,
point iS investigated. The results are then illustrated by a numerical
example for flow with a linearly decreasing veloci@ outside of the
boundary kyer . A second example treats the conditions (involving the
wall temperature) under which laminar sepam3tion will.take place imme-
diately behind a stagnation flow abruptly followed by an adverse
pressure gradient.

ti the final section, the stabili~ of the
over a thin biconvex airfoil in supersonic flow
this purpose, the wall temperature required for
of the flow (infinite minhnum critical Reynolds

o

laminar boundary layer
is investigated. For
cmplete stabilization
number) is calculated

for several M92h nunibersat different stations along the airfoil. h
addition, the minimum critical Reynolds nunber’is detemdned at a given
station for various wall temperatures and Mach nuuibers. Comparison is
made with results for flow over a flat phte in order to demonstrate
the effect of a pressure gradient, in addition to that of wall temper-
ature, on the stabili@ characteristics. The Stabilim calculations
here are based on the well-lmown two-dimensional criteria developed by
Ices and h (r&s. 5 and 6) for compressible flow. Since Iihevalidity
of these criteria appears at present to be in do~t for high Mach
nmibers (e.g., ref. l’),@ present calculations have been restricted
to Mach nuuibersnot above 3. me present results on stabili~ charac-
teristics in compressible flow with heat transfer and pressure gradient
may, in a sense, %e considered as an extension of the results already
obtained for flow over a f&t plate (zero pressure gradient) with heat

‘ transfer (refs. 8 to U) and for flow with a pressure gradient but with-
out heat trsnsfer at the wall (refs. 12 and 4).

Tbe smal.ysisin the present investigation is based on the assumption
of a uniform wall temperature, a Prandtl nuniberof unity, and a linear

l-Shock-waveinteraction with the boundary layer, however, is not
considered.
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temperature-viscosityrelation (as in ref. 1). As in reference 2, huw-
ever, a factor C (first suggested and applied in ref. 13) has been
intr~uced in the temperature-tiscosityrelation to account, at least
at the wall, for the Sutherland viscosi-&ylaw. This factor, as will le
seen, has an influence on the skin-friction and heat-transfer coeffi-
cients, although not on the separatim point. one simple, but very
approximate, means of correcting the Nusselt numbers to be obtained
here in cases of a Prandtl number diff~ent fram unity would be to
multiply the Nusselt nuribersfor unit Prandtl nuuiberby a power of the
actual Prandtl nwiber, this power being rougK& equal to 1/3 (cf., e.g.
refs. 14 and 15).

This investigation was conducted at the Polytechnic 131stituteof
Brooklyn Aeronautical Laboratories under the sponsorship and with the
financial assistance of the Natiodal Advisory Committee for Aeronautics.
The authors hereby express their thanks to Professors P. A. Libby and
M. Bloom for their helpful discussions and to Mr. Richard P. Shaw for
his aid in the calculations.
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SYMBOIS

coefficient of # in velocity profile; see also .

equation (6)

constant average value of *

value of a2 at separation point

coefficient of T in stagnation-enthal~ profile

constant average value of bl

factor in viscosi~-temperature relation (eqs. (1)
and (2))

local skin-friction Ccefficient

specific heat at constit pressure

specific heat at constant volume

constant, given by equation (8)

constant used instead of Fl in determining separation
pointj see equation (24)
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r

s

T

Te

ratio of stagnation enthalpy at w8U to stagnation
enthalpy at outer edge of boundary layer, %lq;

for a Prandtl number of 1, ~ is ratio of actusl

wall temperature To to equilibrium wall temper-

ature Te for zero heat transfer (see also eq. (13))

stagnation enthalpy, defined as quanti~ (1)U2 2 + CPT

constants (see eqs. (28) and (29))

thermal conauctivi~

coefficients in velociti d.istiibutionover thin airfoil
(eqs. (17))

characteristic
figure 1

Wch number

Nw3selt number

l&I@hj Chord lJ3@h fo’l?aiI’fOilOf

\

Reynolds numiber, u4/vcn

Reynolds number, ~L/~

minimumcritical Reynolds nuniber,based on conditions
at point b immediately behind shock wave at :1.eading
edge of airfoil in figure 1, (wL/vb) ~

minimumcritical Reynolds number, based on remote free-
stream conditions in supersonic flow over thim airfoil
of figure 1, (%L/vJ &

proportional to ratio of local skin friction
Nusselt number (eq. (W)

constant
=6° R

absolute

in Sutherland
for air

temperature

viscosi~-temperature

to local

relation,

.

equilibria wall temperature for zero heat tr-ferj

for a Prandtl nmikr of W&, T& = )%~+~%? >

t variable defined by equation (3)
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veloci~ in x-direction
\

coordinates parallel and normal to surface,
respectively

ratio of specific heats, CP/CV~ 1.4 for air

densi~

boundary-layer thickness in xt-plane

geometric slope of thin airfoil profile

coefficient of viscosi@

IcbXmlaticviscosi~

dimensionless distance along wall, x/L

‘5’ = xl/L (see fig. 1)

T

Q

%

Subscripts:

b

cr

fav

o

s,sep

1

dimensionless variable, t/5t

constant defined by equation (8)

constant used instead of ~ in determining separation
point (see eq. (24))

values at point outside of boundary layer immediately
Mhind shock wave at leading edge of airfoil

critical

favorabl.epressure gradient

values at wall

values at or used for determtiu separation point
(see eqs. (23) a (~))

local values at outer edge of boundary layer

. ... ..— . ... —= .—. — —— ——— . % ——— .—.;
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t

values at suitxible.reference pofnt outside of boundary
layer; for airfoil in supersonic flow, values in
undisturbed (remote) free stream

tifferentiation with respect to ~

?3ASICEQUATIONS

The basic equations for the calculation of the lsminar-boundsry-
byer characteristicsin compressible flow with an axial pressure
gr@ent over a wall at a uniform wall temperature To have been
developed in reference 2 with the assumptions that the Prandtl nuniber
is uni~ and that the coefficient of viscosi~ varies with temperature
according to the relation

p/~ = C(T/TJ (1)

where

e.

C = (To/Tm)l/2(& + s)/(To + s) (2)

These equations till be repeated here for convenient reference.
The variable t replaces the physical normal coordinate y according
to the relation

J
t

Y= (T/Tfldt (3)
o

The velocity and stagnation-enthalpyprofiles are given, respectively,
w

u—=
(2T - 5T4+6T5-

( )[
2T6) + ~ -2T + 572 - ld + 10T5 - 3T6 +

U1

~ )(& -T -1-10T3 - & + 15T5 - 4.6fl

:= ~+ (1 - @(35T4 - &# + 70T6 - 20T7)+

bl(T - 2CT4 + 45T5 - 36T6 + 10r7)

(4)

(5)

‘a

.

.. .—
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where

7

‘%2= -(1/2c)(T~Tm) (2-7)/(7-1)(U1’/UJG1(I.+ * ~2)?I (6)

and the dimensionless boundary-hyer tbichess X(?) in the xt-plane
can be calculated from the equation

F1 = 0.1093 -1-

are constants defined as

O.ooq - o.000622a# +

—.

o.0000095(-5@q2 -0.000153 (spJ’/f)

~ = 0.3~ + o.o@138 + 0.0232~ - 0.00=4a22 +

i&.0~ + (@q) (0.0838 - 0.0d+5~)]

where ~ and 61 denote constant average values of

over the entire flow.

, (8)

)

Equation (7) is a solution of the ordhsxy differential equation

= 2C(Rx@)(wT’=)pd’q (9)

The coefficient bl(.5) is a tiction of %(~) and is to tiec~c~~

as the solution of a quadratic equation (eq. (68) of ref. 2) after A(g)
and thence %(E) have been determined. It will usually be found that

an approximate value for bl is

%-p - %) (lo)

— -—-. —.—. ——_ .—.. .—— .—— .-.-.— ———...— —
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(W. (10) h exactly valid for flow over a flat plate,) The temperature
distribution ~/~ and the Mach nuder ~ at the local outer edge of

the boundary ~er will be related to the veloci~ distribution ul/~( ~) “
there according to the relations

%2=(uq#%2(%j%)-’

(n)

(12)

The wall-temperature ratio To/!l& is related to the parameter Gl = To/Te

by the relation

To/!l&=

The local
cients follow,

skin-friction
respectively,

,

(13)

and heat-transfer (Nusselt number) coeffi-
fram the equations

(Paupy)
Cf z

z &%2Q = 4 p - (@) - (%%2}%J @/m)(%@m) (ulpJ@2
Qc

From
effect of

(14)

(@@Y) OL
Nu =

= @@~4? - G’1)](%WJ%W (15)
%(TO - Te)

SIcm-FRImoN AND HFAT—TmNSFER cHARAC?mmISTIcs

the foregoing equations, several general conclusions on the
wall temperature, pressure gradient, and Mach number on the

.

7

skin-friction and Nusselt nuriibercan be deriv&d.

General Implications

The effect of wall temperature on the sldn-friction and heat-transfer
coefficients arises essentially from two different sources: (a) The
conditions of dynamic equilibrium, as defined mathematically by the basic
differential equations and their solutions, and (b) the variation of the
viscosi~ coefficient with temperature,

.
as defined mathematically by the

constant c.
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With respect to (a), the effect of wall temperature will depend on
the nature (positive or negative, i.e., adverse or favorable) of the
pressure gradient. This follows from the fact that in the governing
momentum ordinary differential equation (eq. (9)) the quantity G1

appears primarily in a form multiplied by the veloci~ gradient ul~

in the flow outside of the boundary layer. This is also the case in
the coefficient ~ (eq. (6)). w bringing the U1’ term in equa-

tion (9) to the right side and observing the expression for ~ according

to equation (8), it can be seen, in fact, that for U1’ >0 (favorable

pressure gradient) (l/C)’, and hence (l/C), will tend to be increased
by a decrease in the wall-temperature psrameter G1.2 This result, in

conjunction with equations (14), (15), (6), and (10), indicates that,
without the effect of C, lowering the wall temperature tends to diminish
the local Nusselt number and, especially, the local skin friction in a
favorable pressure gradient and to increase tQe Nusselt number and,
especially, the skin friction in an adverse pressure gradient. This
conclusion is in accord with that also derived in reference 1. It must
be noted, however, that for a cooled wall, where ~ < 1, the foregoing

effect of wall temperature on a2 due to a pressure gradient will

ordinarily be greater than that on A/C, since it till.be found frcan
the general solutions (7) and (8) that A/C is then not very sensitive
to changes in ~.

From equations (14), (15), and (7) it follows that both the skin
friction and Nusselt nuniberwill be proportional to ~. The effect of
wall temperature arising from the viscosi~ coefficient and determined
by the constant C is, contrary to the dynamical effect just discussed,
independent of the pressure gradient. From eqution (2) it follows that,
if To/!& is diminished, then C and hence C.fl and Nu -decrease

when To/~ < S/!J& (or To < 216° R), while C and hence CfZ and Nu

increase when To/& > S/~ (or To > ZZ60 R). The latter is expected

to be the case in practice. Thus, depending on the nature of the
pressure gradient and possibly on the magnitude of the wall temperature,
the dynamical and viscosi~ effects of wall temperature may tend either
to magnify or psz’tlyto cancel each other. More specifically, unless
the wall is unusually cold, that is, unless To< S, these effects will
tend to oppose each other in a favorable pressure grsdient and to magnify
each other in an adverse pressure gradient.

2According to the equations developed here, this conclusion may not
be quite valid in the hmnediat-eviciniiqyof a sharp leading edge where
the pressure-gradient effect is-relatively unimportant and the small
effect of wa13 temperature on F1 may actually predominate. (Cf. table II
in conjunction with the numerical example discussed mibsequently.) Ih
this vicinity, however, the dynamical effect of a uniform wall tempera-
ture will.be found to be negligible.

—. -—. — — .- .
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significant to note that, since the velocity gradient ul’

the equations (eqs. (6) and (9)) always multiplied by the h
wall-temperature ratio ~, it can he inferred that a lowering of the

wall temperature has a tendency to diminish the direct effect of a given
pressure gradient, that is, the effect of U1’ as such, on the boundary-
layer properties. A clear illustration of this willbe seen subsequently
in the analysis of laminar separation (cf. also ref. 1).7 It -t be

observed, huwever, that the effect of a pressure gradient also appears
indirect 3-/ly, namely, in the variation of u u and T1/& with ~.

For Mach nmibers above 1, in fact, the !P@!m terms In A (eq. (7))
may become particularly hportant, so that in such a case the net effect
of the pressure gradient may actually be increaaed by a loweri~of the
waKL temperature. !CMS willbe clearly illustrated by the subsequent
numerical example.

Fram equations (14) and (15)
friction coefficient to the local

it follows that the ratio of local skin-
Nusselt number canbe expressed as

(16)
.

Equation (16) is valid along the enttie flow. For flow over a flat plate
(zero pressure gradient: u~um= 1, ~= O), equation (l@ implies

r 2. For flow with a pressure gradient, however, this simple relation
is=seen to be no longer va13d. Since, ordinarily, 4(1 - Gl)/bl H 2,
equations (16) and (6) imply r > 2 along the flow in a favorable
pressure gradient (u1’ > O) and. r < 2 in an adverse pressure gra-
dient (ul’ < O). Thus the ratio r tends to be increased by a negative
(favorable)press

T
e gradient and decreased by a positive (adverse)

pressure gr@ent. l?romeqwtions (6) and (16) it is seen that, for a

Sl?urtherillustrations of this conclusion can be found in numerical
examples of reference 16, which are based an a small-perturbationmethcd.

4Equation (14) and hence equation (16) may be inaccurate at, and
hence in the imnediate vicinity of, the separation point in an adverse
pressure gradient, since, according to the criterion of separation
(eq. (20)) developed in the succeeding section “Iocation of Separation
Point,“ Cfz as given by equation (14) till not vanish exactly at the

separation point. This is due to the use of sixth- instead of seventh-
degree veloci@ profiles here. However, equations (14) and (I-6)should,
for practical purposes, be adequate to yield the distribution of skLn-
friction along the flow. When the primary interest is in the location
of the separation Toint, the method described in the section “bcation
of Separation Point” should be used.

.

—
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given pressure gradient and Mach number, the lower the wall temperature
the closer will r he to its value for flow without a pressure gradient.
This illustiatis the ttlminutionof the direct effect of a pressure gra-
dient by cooling of the wall.

From equation (7), as has already been noted, it tilJ.be found that
in the presence of a pressure gradient l/C may be appreciably affected
by the Mach ntier because of the values of T1/~(~) . Consequently it
can be inferred, in view of equations (14) and (15), that a pressure gra-
dient will in general tend to enhance the effect of I@ch nuriberon both
the heat-transfer and skin-friction coefficients. Since the values of

?L/%J(~) ~~ depend on the ~stributfon of the Velocfw ul/%( 5)
along the flow (eq. (U) ), this effect of Mach number will, in fact,
depend on the nature of the pressure gradient. For a favorable pressure
gradient, fcm example, one for which (with proper choice of ~)

u@ > 1 and hence ~/& < 1, an increase of Mach number cm be
expected to increase A/C and hence, according to equations (14) and
(15), to decrease both Musselt number and the skin friction. The oppo-
site effect will tend to occur in an adverse pressure grad3ent.

It should be further noted that for a given ratio ~ of wall

temperature to equilibrium temperature a Mach nuuibereffect, independent
of the pressure gradient, also appears in the tiscosi~-temperature
factor C according to equations (2) and (13). If To > S, then for a

fixed G1 an increase of I@ih number ~ will diminish C and hence

will tend, as far as C is concerned, to diminish both the skin-friction
and heat-transfer coefficients in proportion to ~. Thus, in a favor-
able pressure gradient, the dynamical (i.e., ~~) and tie tiscosity

(i.e., C) effects of I&chnumber will tend to amplify each other, w~le
in an adverse presswe gradient they will tend to oppose each other..

,It may be worth while to note here that, in tiew of the fact that
1, and hence bt, will ordinarily be only little affectedly the wall
temperature, equation (3) implies that cooling of the wall till in
general tend to diminish the physical boundary-layer thickness. However,
for a given value of Gl, the boundary-layer thiclmess will tend to
increase with

h order

Mach nuniber.

Numerical Exsmple

to illustrate the foregoing general conclusions the
boundary layer in the supersonic flow over a thin biconvex circular-src
airfoil of thiclmess ratio 0.04 (fig. 1) at zero angle of attack was
calculated by means of the equations given here.~ For this case, the

~ bl(~), however, was calculated by means of equation (68) of refer-
ence 2 and not by the approximate equation (10) given here.

——— .
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veloci~ distribution outside of the boundary layer can be expressed
as (ref. 17)

>

(+qf-
1

2)2

i

(17)

where q is the slope of the airfoil at any point along its surface.
b equations (17), the stiscript ~ refers specifically to the remote
free-stieam conditions.

It is in this case convenient, especially for
ison with flow over a flat plate, to use the point
subscript b) imnediatily behind the shock wave at
-thereference point.6 For this purpose, it may he

q)% = (@uJ)/(ub/q

Purposes of compar-
(to he designated by
the leading edge as
noted that

.

where ulJ~ is given by equations (17), while ~/M is obtained from .

equations (17) by evaluating the slope q at the leading edge. The
free-stream Mach nuder I& can be e~essed in terms of the Mach

nuniber ~ at point b by means of the relations

%2= Mn2(%@J)2(z+b)

Z#’b = (~+(7-N %21
2

. (18)

~ refers to any suitableSince in equations (1) to (16) the stiscript
reference point outside of the boundary layer and since in supersonic
flow it must refer, in these equatims, to a point behind a leading-edge
shock wave, it will, for this example, be taken to denote the point b.
It till be assmned in this example that S/~ = 0.416.7 It should be
noted that the pressure gadient here is entirely favaable (u1’ > O).

6ti ~s manner, when cwpsrison is made with flow over a fl-atp~te,
the effect of the pressure @a&Lent over the airfoil will be retained,
but the effect of the leading-edge shock wave will be essentially eliminated.

71n this example, therefore, the temperature ~ outside of the
boundary layer immediately behind the leading-edge shock wave, instead of
the remote free-stresm temperature !&, is considered fixed, while the

,

Mach number ~ behind the shock varies.

—. —
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Figures 2 and 3 show the distribution of local Nusselt number and
friction for this example, with ~ = l.> and 3.0 and with

0.3, 0.5, and 0.7. The results for a flat plate are also shown

for comparison. (I?or ~ = 1.5, the value of ~ was taken to be

k= -L620G1, while, for ~ = 3.0, the value 52 = -1.55% was used.)

Tables I, II, III, and IV give the calculated values of C, ?@
bl/(l - ~), and ~, respectively, for the various values of ~ and

~. lh accordance with the general conclusions developed here, it should

be expected that, for this example of a favorable pressure gradient, the
dynamic effect of wall temperature (i.e., the effect of wall temperature
if C were fixed) should be such that lowering the wall temperature
diminishes both the Nusselt number and, especially, the sldn friction.
However, since with the values assumed in this example To/’% > s/~ in
all the cases, the viscosi@ (or C) effect of wall temperature will here
he opposed to the dynamical effect (cf. also @bles I and II). Figure 2
indicates that the Nusselt number here increases as the waK1.temperature
is lowered for a given Mach number and hence that the effect of waU
_ra*e arising from the tiscosi~-zrature relation is the pre-
dominant effect here. For the sldn friction, however, figure 3 indicates
that except near the leading edge (~’ < 0.2) the dynsmical effect of the
wall temperature is predominant for ~ = 1.5, since here Cf2 diminishes

as the wall is cooled. For%= 3.0, on the other hand, where To/~

is greater for a given value of ~ (cf. eq. (13)), so that the C-effect

becomes more important than for ~ = 1.5, it is seen that the dynamical

or pressure-gradient effect of wall temperature predominates only slightly
and only after a considerable distance (~’ > 0.6) downstream of the
leading edge.

Figure 3 indicates that, for ~ = 1.5, lowering the walJ tempera-

ture brings the skin-friction curves for the airfoil closer to those for
a flat plate. This illustrates the general conclusion previously reached
regarding the diminution of the direct effect of a pressure gradient by
a lowering of the wall.temperature. However, for ~ = 3.0, figure 3
indicates that the skin-friction curves for the airfoil will now be
further removed frcxuthose for a flat plate when the wall temperature is
lowered. This is essentially due, as previously intimated, to the
increased effect, at this higher Mach number, of the temperature.distri-
bution T~~(~)(<l) outside of the boundary layer along the airfoil,
which tends to increase A/C and hence diminish Ml (as well as Nu)

in comparison with the value over a flat plate (where ~m = 1). The

direct effect of the pressure @adient given by the a2 term in eqw-

tion (14), however, is to increa~e the sldn-friction coefficient over
that for a flat plate, but at the higher Mwh number this effect is not
so great as the indirect effect of @ pressure ~~ent due to Km(~) ●

----- --. .—-— ..——. . .— .-— —. ..— —————— —————
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The decrease of local

~ = 3.0 (fig. 2) and the
cient for ~ = 3.0 (fig.

NACATN 3296

.“
Nusselt number for both ~ = 1.5 and

decrease of the local sld.n-frictioncoeffi-
3) along the airfoil downstream of the

L

leading edge are due primarily to the decrease, in this region of nega-
tive pressure gradient, of the local temperature T1 outside of the

boundary layer (which &creases ~C according to eq. (7)) . This, in
fact, illustrates the enhanced effect of l@ch nw?iberon the heat-
transfer and skin-friction coefficients due to the pressure gradient.

‘lahleIII indicates that the values of %1 as calculated from
equations (67a) and (68) of reference 2 remain fairly close to the
value 2(1 - G~

pressure gra&Lent
the leading edge)

(cf. eq. (10)), although in the present favorable
(a~< O) they are everyvihereless than or equal (at

to this value.

LOCATION OF SEPARATION POINT

Ih a region of adverse pressure gradient (negative U1’) there is
a possibili~ of laminar separation, which occurs where (au~)o = o. =

A fairly accurate and simple method-of calculating the separation point
in compressible flows with zero heat transfer was developed in refer- .
ence 4 and was based in part on the use of an additional boundary con-
dition (ftrst suggested in ref. 3) at the wall necessarily satisfied at
the separation point by an exact solution of the partial differential
equations. For zero heat transfer, the separation point as a function
of Mach nunber calculated by this methcd was found to agree very well
with numerical solutions in reference 18. (See ref. 4 for details;
also, see table V.) W the present section this methcd will be general-
ized for any given uniform wall-temperature ratio G1 = To/% . (For
zero heat transfer, as in ref. 4, G-J= 1.)

M3thod of CalcuIa.tingSeparation Point

Ey differentiating the momentum partial differential equation of
the laminar boundary layer, it can be shown (see the appendix), under
the present assmnptions of a Prandtl numiberof 1 and a linear tiscosi@-
temperature relation, that at the separation point

(19)

with, as well as without, heat tiansfer at the wall.

—
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A seventh-degree8veloci~ prOfile in T can now be chosen to
satisfy condition (19) in addition to the boundary conditions satisfied
by the sixth-degree profiles (eq. (4)) on which the preceding analysis
has been based. From this ~ofile (cf. appadix) it follows that separa-
tion till occur where ~(~) has the value (denotedby

3.5%
% = ~ + (2/15)b1

Moreover, %(~) is stilJ-given by equation (6). IYOm
and (20) it follows that the value &ep of A at the

will in general be

%2s)

(20)

equations (6)

separation point

(9?*)
-(2-7)/(7-1)

%ep = ‘~e
1 (21)

(uI’/%)( )
1 + ~ %2 ~ + (2/15)bl

By inserting the
it is found that

%ep

approximate equation (10) for bl into equation (21),9

= -l@c
(%&J -(2-7)/(7-1)

(“1’/%)~ + * %’) %1+ 4

(22)

Moreover, by ap@@ng the same type of analysis as described in refer-
ence 2 to the seventh-degree veloci~ profile, the following e~ression
for A{~) (denoted by XJ can be derived (details are given in the
appendix):

~’( / )
(1 )

[(27-1)/(7-1)]- (~S/%s)d5
U1 Um

2 F.. %-l(T~Tm)

h(~) = ~c
Z& (/%) s l?ls

(ul/%J 2
(~~T ~ [(fil)/(’-l)- (ms/%s)]

m
(23)

81t should be noted that such a seventhdegree velocity profile is
used here only for the purpose of determining the separation point and
that otherwise the sixth-de~ee veloci@ profiles of reference 2 (see
also eq. (4)) should be used.

%!he use of this approximate value greatly simplifies the calcula-
tions without appreciably affecting the accuracy. This is due to the
fact that equation (10) should or~ily be a fairly good approximation
for bl (cf., e.g., table III), while, except in cases of extreme

cooling (GI close to zero), the bl term in equation (20) will.be

relatively small.

. . _. —.-. _ —... .— ——————
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where ~b and ~ are constants given by

F~ = 0.1.159+ O.002525~~ - 0.oo1454a# -0. ooO~72(b@~)2 -

o.oO@7k(bl~~2/~ ) + 00000887(b1%s/%)

?3-s = o.25q + 0.0437 +

0.00773 (%%s/% )

NACA TN 3296

.

P

- 0.00u47 (b1~S2/q ) -0. ooo~45 (bla2#l)2

O.O@hl -f-O.O~~s - 0.0029~s2 +

and bl and ~~ are simple functions of ~

tions (lo) and (2o). The constants ~h and

G1 and are shown in figure 4.

(24)

according to equa-

~ are functions of

For any given reference Mach number ~ and uniform wa12-temperature
ratio G1, the separation point in a region of given adverse pressure .

grtient, as specfiied by uI/w( g), will be the station E at which the
right sides of equations (22) and (23) are equal. Thus, it is necessary,
in general, only to plot A VerSU3 ~, in the antici@ed ViCilli~ Of
separatim, in accordance with both equations (22) and (23), and to
determine the point of intersection of these two curves. The separation
point will evidently be independent of C, so that for the purpose of
detwmidng the separation point one may set C!= 1. h the case of a
region of favorable pressure gradient starting at the leading edge
followed by a region of unfavorable pressure gradient, equation (23)
should be rncd3_fi&i
assmnption that X
veloci~ gradient

to equation (A9) of the appendix, based on the
is continuous at the point of discontinuity of the
Ul$.

General Implications

With respect to tbe effect of wall temperature on the separation
point, it should be noted, first of all, that, as remarked in the pre-
ceding paragraph, the value of the temperature-viscosityfactor C has
no influence on the separation point. Thus, the temperature-viscosity
relation, as it is incorporated in C, does not have the significant
effect on the separation point that it has on the skin-friction and
heat-transfer coefficients. ‘Zheeffect of wall temperature on the
separation point will thus arise only from its dynsmical, or pressure- n

gradient, effect (cf. the section “Skin-Frictionand Heat-Transfer

Characteristics$’). >

——
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For a fixed veloci~ distribution u~~( ~) outside of the boundary

layer and a fixed Kch number M& the equations developed here will

imply that diminishing the wall temperature, that is, diminishing Gl,

will have a favorable effect on separation by moving the separation point
downstream. This can be seen particularly from equation (22), according
to which the required value of A for separation (~ep) will increase

as G1 is diminished. This delay of separation caused by cooling of

the wallLis an illustration of the general tendency, discussed previously,
of a decrease in wall temperature to diminish the direct influence of a
pressure @ent (in the present case, an adverse pressure gradient).

The effect of Mach nuuiberon the separation point for a fixed value
of u~~( ~) and either a fixed value of ~ or a fixed value of

To/!& cannot be predicted quite so readily from the equations as the
foregoing effect of wall temperature. lbch nuuibereffects are contained
in the ~/Tm terms in equations (22) and (3), as welJ-as * the ~

term of equation (22). These terms tend to cause a decrease in both
~ep and ~ with increase in Mach number. For a fixed value of ~,

that is, a fixed ratio of actual wall temperature to equilibrium wall
temperature for an insulated wall, numerical exsmples for the case
ul/~ = 1 - 5 have indicated that the effect of Mach number on the

required value of A, that is, &ep (ra*r - on &), is the pre-
dominant effect, so that under suCh conditions an increase in ~ch
number moves the separation point forward and thus enhances separation.
A well-lmmn case in this respect is that of zero heat tiansfer, where
G1 = 1 (e.g., refs. 4 and 18). However, according to additional results

for the case u~~ = 1 - ~, lowering the fixed value of ~ tends to

diminish somewhat this adverse effect of Mach number (ref. 1).

~, instead of considering the ratio G1 as fixed, the ratio To/%
of wall temperature to the reference, or free-stream, temperature is held
fixed, then the effect of Mach number on the separation point for a given
veloci~ distribution ul/~( ~) is altered. This is due to the fact

that, if To/!& is fixed, then, as seen from equation (13), ~ varies

with Wch nmiberj and, in pmticular, ~ decreases as ~ increases.

!l!hiseffect has a tendency, according to equation (22), to incre~e the
value of A required for separation as l& is increased. This, in

turn, tends to move the separation point downstream, and the numerical
example to be stisequently given here indicates that the net effect, at -
least in the case ul/~ = 1 - ~, of increasing the &ch nuriber & as

the wall-temperature ratio To/& is fixed is to delay separation. !l?his
is hence in contrast with the results obtained for fixed values of ~,
that iS, fixed =lues of To/Te.

.
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~

Nmerical Wanple

To illustrate quantitatively the application of the equations
,.

developed here, as well as the foregoing conclusions, a numerical
example based on the case

will now %e given in detail. E uation (~) represents the simplest me
toof an adverse pressure gradient.

First, the effect of wall temperature on the separation point for
a fixed Mwh number will be calculated. For this purpose, it will be
assumed for simp~city that ~ = O (so that W@& = 1) while the

parameti G1 (GI = To/!& if ~ = O) -ies. b this case, equating

the right sides of equations (22) and (23) leads to the folhwing simple
expression for the location of the separation point as a function of the
wall temperature (~ = Esep):

(Es.ep=l- 1+
am (-%J%J

++4 )
(26) .

where ~ ~ ~ls are given in terms of ~ by equations (24), (10),

and (20) or by figure 4. A result qyallitativelys~ to equation (26)
was obtained by the use of fotih-degree profiles in referace 1, but
because of the present use of a seventh-degreevelocity profil.ethe
results based on equation (26) are considerablymore accurate quantita-
tively. The separation petit according to equation (26) is plotted in
figure 5 for a range of vslues of To/T= from 0.3 to 2.0, and the effect

of cooling of the wall b dele@ng separation can be clearly seen here.

b order to determine the effect of Mach nuuiberfor a given ratio
of wall temperature to free-stream temperature To~, the separation
point has been calctited for a range of Mmh nunibers ~ from O to 5.31
with a fixed value of To/~, nsmely, To/~ = 2. W values of ~,

therefore, range from ~ = 2 (for l& = O, wall heated) to ~ = 0.3

(for ~ = 5.31, wall cooled). The calculations can be performed by

observing that by virtue of equations (n) and (12) equation (22) with

Y = 1.4 can be written as

10H U1/~ = 1- k~, where k is a positive constant, then, as
.

shown in, for example, reference 4, the results based on equation (25)
remain valid, with ~ replaced by k~ and X replaced by kA.
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+

%ep = ‘l~c
(&p#.5

~ + ~(TO/Tm) + 0.8MW2 (u,’/%)1
(27)

Equation (27) is in a form convenient for calculations involving a fixed
value of To/%. For each specified Mach nuniber &, ~ep as a

function of .Ejcan thus be readily calculated, while &(E) can be c~-

culated from equations (23) smd (24) (or fig. 4) by numerical integration.
The value of g at which & = &ep is then the separation point. The

results of such a calculation for the case denoted by equation (25) are
shown in figure 6. For comparison, the separation point versus Mach
nunber for zero heat transfer is also included in the figure. The
results clearly indicate the favorable effect of Mach number (for the
fixed veloci~ distribution of equation (25)) on the separation point
for the fixed value of To/’l&,in contrast with the unfavorable effect
of Mach nuder at zero heat transfer (when G1 is fixed at uniw and
hence To/~ increases with Wch nuniber: cf. eq. (13)).

Stagnation Flow Followed by Adverse Pressure Gradient

It has already been indicated how the separation point can, in
general, be calculated in cases of a favorable pressure gradient followed
by an adverse pressure gradient. It may be of interest in this connec-
tion to investigate the following question: Under what conditions will
the boundary layer in the favorable-gradient region develop to a suffi-
cient extent so that laminsr separation will.occur almost immediately at
the point where the unfavorable gradient starts? Jlnparticular, to what
extent does the wall temperate affect such conditions1’ l?roma practi-
cal point of view, this question appears equivalent to the question of
when the flow will separate at the point of minhum pressure outside of
the boundary layer. It is welJ lumwn that, at least in incompressible
flow without heat transfer, laminar flow usually tends to separate
shortly downstream of such a point if the pressure gradient is contin-
uous. b case the favorable pressure gradient can be represented by a
stagnation flow, that is, by a flow outside of the boundary layer of the
fOrm

(28)

where K1 is a positive constant, and the Mach numbers in this region

are sufficiently low so that their effect in this region can be neg-
lected, it will be seen that tie foregoing questions can be answered
in a particularly s~le and fairly interesting manner.

.,

#

—— .—. ._. ._ ——. —..— ——.—— .— -———- ...—- .



20 NACA TN 3296

I&J the subscript @ now denote the point where’the adverse
pressure gradient starts (here presumed abruptly, that is, discontinu-
ously) after the favorable pressure gradient, and let ~ be pro-

.

portional to the magnitude of the negatim veloci~ gradient in the
adverse-pressure-gradientregion at this point, that is,

K2 = -(ull/%) E=E@. (29)

Then, according to equation (22), separation wi~, in general, occur
immediately at this point if A (denoted here as ~av) at this point

as calc~ted from the flow in the favorable pressure gradient satisfies
the relation”

H, in particular, the region of favorable pressure gradient is a stag-
nation flow characterizedby equation (28), then, appwng the restits
of reference 19 and identifying A with the quantity IC2 there, .

~a.v=‘(Gl) F1 (31) ,

where f(Gl) is a function of ~ which can be found either fra

figure 1 of reference 16 or by solving the algebraic equations (3o) and
(31) there.13 %bstitutim for ~av tito rehti@ (30) yie~ the
following condition for immediate separation after the stagnation-flow
region:

(32)

%s is, of course, an idealization, since in ac=~ the
pressure gradient will not be discontinuous. However, this ide~za-
tion might also be regarded as an appro-tion for a rapidly changing
Tressure gradient and serves to furnish at least a qua~tative answer
to the foregolng questions.

‘It iS permitted to put C = 1 here since it has already ‘been
seen that C does not sd?fectthe location of the separation point.

13 f(G~ is essentially ic12 for q = O in reference 19. The

quanti~ h there is equivalent to the quantity ~ here.
.
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Ih figure 7 F(Glj is

from figure 7, F(G~

‘(%) = (~ i k)f(G~
05

plotted against ~ for

varies from 2.4o to 1.00

(33)

Gl=Otol. As-seen

in this range and

increases as G1 “diminishes,that is, as the wall is cooled.

From relation (32) it is seen that the condition, in the present
case, for separation a% the immediate start of the adverse pressure gra-
dient depends in a simple mann= on the magnitude of the ratio of the
adverse veloci~ gradient ~ to the favoralle veloci~ gradient K1.

Cooling of the wald.is seen, mce again, to have a tendency to prevent
separation, since it increases the minimum required value of K#l.

The Mach nuder at the beginning of the adverse- ressure-gr=ent region
is, however, seen to have an unfavorable effect.%

STABILITY CHARACTERISTICS

It is of interest to investigate the effect of wall temperature,
Wch number, and pressure gradient on the stxibilitycharacteristics of
the laminar boundary layer. For this purpose, two types of calculations
will be made for the supersonic flow over the thin airfoil (fig. 1) on
which the numerical example in the section “Skin-Friction and Heat-
Transfer Characteristics”was based. First, the wall temperature
required to stabilize the lsminar boundary layer carpletdy, that is,
for infinite minimum critical Reynolds number, will be calculated at
two given stations along the flow for various Mach nudmrs. Second,
the minimum critical Reynolds nuniberat a given station will be calcu-
lated as a function of the wall.temperature.

The methcd of calculation is based on the stabili~ criteria devel-
oped by Iin and Ices (refs. 5 and 6) with certain modifications pre-
sented in an unpublished paper entitled “calculation of Stabili@ of
Constant-PressureBoundary Iayers on Isothermal Surfaces With an htegral-

Method Mean-l?low Solution” by Msrtin Bloom.15 Explicit details on the
methai of calcubtion can also be found in reference 4. The stability
criteria as developed by Lin and Lees are based on the amplification or
decay of small disturbances, and the ndmhnum critical Reynolds number
thereby obtained is the nddmum Reynolds number required for the

flow
high

14Because of the neglection of Mach number
region, equations (32) and (33) maynot be
values of ~.

15See also references 9 to 11.

effects h the stagnation-
quantitativelyvalid for

.—. —......——. .—— .—————— —-— — —_—__—. . . . . .
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possibiU@ that at least certain @es (depending on the wave lengths)
of disturbances will be amplified. Thus, the existence of a Reynolds
mmiber exceeding the minimum critical Reynolds nuuiberis a necessary
condition for instabili~ of the hminar boundary layer. However,
transition to turbulence, which appears to depend on the magnitude of
the amplified disturbances, will usually occur at a higher %ynolds
nunber and hence at a point downstream of the point where the actual
Reynolds number is equal to the minimum critical Reynolds nuaiber. Never-
theless, it can probably be qua~tatively concluded that the higher the
minimum critical Reynolds nuniber,the more stable the flow and the less
the tendency for transition. (Further details on such questions can be
found in references 5, 6, and 20.) “

l?igme 8 shows the wall-temperature ratio To/~ and figure 9, the
ratio To/& versus the Mach number ~ required for canplete stsbil.i-
zation of the flow at two different stations along the airfoil of fig-
ure 1. The results for a flat plate (zero pressure gradient) are also
included for comparison. Ilgure 9 clearly indicates, fram one viewpoint,
the stabilizing influence of the negative pressure gradient here, since
the required madmum values of To/Tl for infinite minimmn critical

Reynolds nuiber are greater for the airfoil than for the flat plate;
hence, less coofig, relative to the local temperature T1 outside of
the boq layer, would be required for the airfoil than for the plate.
l?i~e 9 also indicates that at the higher Mach numbers the stabilizing
effect of the favorable pressure gad.ient appears to be rehtively
diminished.16

These results on the effect of the pressure gradient are qualita- .
tively in accordance with the conclusions of reference I-2(based on zero
heat transfer). For the special case of Mb = 1, it may be observed,
in this connection, that, although infinite cooling (T. = O) would be
required to stabilize the boundsry layer over a flat plate completely,
only a finite degree of cooking (T. > O) would suffice to sbbilize the

flow over the present airfoil. This is due to the fact that the local
Mach number increases along the flow over the airfoil, so that wh=

w = 1 the local Mach number Ml will exceed unity at the stations

along the airfoil downstiesm of the leading edge.

It is significant to note that the curves for the required maximum
values of To/~ (fig. 8) for the airfoil and for the flat plate cross

one another at certain llachnmibers ~. This indicates that, for a
fixed reference temperature ~ outside of the boundary layer immedi-
ately behind the shock wave at the leading edge, there are Mmh

16~s ~~t be due p~si&K@, at least in part, to the fact that
.

for the highe Mach numbers ~ the magnitudes of the favorable-velocity-
gradient ratio ul‘/ub according to equations (17) and (18) as we~ as
of the pressure-gradient parameter ~ (table IV) are decreased.
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nuuibers ~ (for example, ~ >2.3 at ~’ = 0.8) for which a lower

(uniform) wall temperature would be required on the airfoil than on the
flat plate to stabilize the flow completely. This seemingly paradoxical
result (in view of the favorable effect of the negative pressure gradient
described in the preceding paragraph) is due to the fact that the local
_ra*e ~ outside of the boundary layer over the airfoil d~minishes
along the flow and is therefare less than ~, particularly for the higher

l&ch numbers (cf. eq. (Il.),with subscript w replaced by b). Thus,
from the tiewpoint of complete stabilization, the net effect of the nega-
tive pressure gradient at higher Mach numbers is unfavorable with respect
to the required temperature ratios To/~ but favorable with respect to

the required temperature ratios To/~, in the sense of figures 8 and 9.

lt@re 10 and table VI show the minimum critical Reynolds number ~, ~

for the boundary layer at a given station along the airfoil and at two
different Mach numbers for both various wall-reference temperature
ratios To/~ and variouE wall-equilibrium temperature ratios ~. The

stabilizing effect of cooling of the wall is clearly indicated here, since
the minimum critical Reynolds number,is seen to increase as the walJ.-
temperature ratios are diminished. lbreover, by caparison with the results
for flow over a flat plate, the stabilizing effect of the negative pressure
gradient (by increasing the minimum critical Reynolds nuniber)is also seen
in figure 10. The destabilizing influence of a positive pressure ~adient
is, for zero heat tiansfer, illustrated by an example in reference 4.

It is interesting to observe the effect of Mach number on the sta-
bility of the laminar boundsry layer. l?romfigure 10, it is seen that
for a fixed ratio G1 of wall temperature to equilibrium temperature
an increase of Mxh number from 1.5 to 2.0 destabilizes the boundary Layer
both over a flat plate and over the airfoil. This effect, for the limited
Mach nzmiberrange considered, is seen, in fact, to be enhanced by the
negative pressure gradient here. E, now, instead of a fixed value of
~, a fixed ratio of wall temperature to reference temperature To/~ is

considered, the effect of lkch number,”for the limited range under con-
sideration, is chauged. For flow without a pressure gradient, an
increase of Mach nuniberis now seen frm figure 10 to have a stabilizing
effect, especially at the lower wall temperatures. For the flow over the
airfoil, however, figure 10 (cf. also table VI(a)) now indicates that an
increase of Mach number has a stabilizing effect only at wall temperatures
close to the critical walJ-temperature (i.e., for infinite mixdmum criti-
cal Reynolds number) and that for (fixed) higher wall-temperature ratios
of To/~ an increase of Mach number has a clear destabilizing effect,

similar to the case of fixed values of ~. Thus, for the low Mach number
range treated here, the negative pressure gradient over the airfoil con-
sidered here mcxli.fiesthe effect of Mach nuuiberon Uuni- stabili~ for
a fixed ratio of walJ_temperature to reference free-stieam temperature.
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The critical Reynolds nunhrs in figure 10 are based on conditions
immediately behind the leading-edge shockwave on the airfoil. By
comparing these Reynolds nuaiberswith those for a flat plate (u~~ = 1), “

the effect of the actual shock-wave on the stability of the boundary
byer is essentially eLhninated, so that only the effect of the veloci~
(or, equivalently, pressure) gradient ul‘/~ (h addition to the effect
of wall.temperature) is included here. From a practical viewpoint, it
may also be of interest to determine the effect on boundary-layer sta-
bility as the flilghts~eed of the supersonic airfoil is increased. For
this purpose, the minimum critical free-stream Reynolds nuuiber ~, Cr
versus the free-stream Mach nuaiber I& has been calculated, and the
results are shown in figure 11 and tible VI. The results are seen to be
quite similar to those based on conditions immediately behind the leading-
edge shock wave in the airfoil.

CONCLUSIONS

Under the assumptions of a Pmndtl m.miberof 1 and a linear viscosity-
temperature relation in conjunction with Sutherland’s equation, the
foldmwing conclusions can be stated from the present investigation of the
compressibleboundary layer in a pressure gradient over a surface at a
given @form wall temperature. (Interactionbetween the kmndary layer
and the external stream has not been considered.)

1. !lIheeffect of wall temperature on the skin-friction and heat-
transfer coefficients arises from the pressure gradient and (independently
of the pressure gradient).from the factor C in the tiscosi~-temperature

relation. (C = (To/ZJ 1/2(& + S)/(T. + S) mere To is tie temperature

at the wall, ~ is the temperature at a point outside the boundary layer,
and S is the Sutherland consbant.) In regard to the pressure-gradient
effect, cooling of the wall tends to diminish the Nusselt number and,
especially, the ski-nfriction in a favorable (negative)pressure gadient
and to increase the coefficients in an adverse (positive) pressure gra-
dient. ti regard to the temperature-tiscosityeffect, lowering the wal.l-
temperature ratio To/& will ordinarily tend to increase both the skin

friction and Nusselt nuuiber.

2. Coolhg of the wall tends, in general, to diminish the direct
effect of a pressure gradient. A particular~ clear eqle of this is
the delay of separation in an adverse pressure gradient by cooling of
the wall.

3. A simple and ordinarily sufficiently accurati meth&l of deter-
- the separation point in a given subsonic or supersonic adverse

.

.
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pressure gradient over a wall at any specified uniform wall temperature
has been developed here.

.

4. The results of a numerical example for a fixed Mnesrly decreasing
veloci@ outside of the boundary layer indicate, in addition to the
delaying of separation by cooling of the wall, that, for a fixed ratio G1

of wall temperature to equilibrium adiabatic wall temperature, an increase
of free-stresm Mach number moves the separation point upstream; while,
for a fixed ratio To/Tin of wall temperature to free-stream temperature,

an increase of Mach nuuiberhas, in general, a less unfavorable effect and
in this case actually moves the separation point downstream.

5. Numerical examples for the supersonic flow over a thin airfoil
indicate in detail the stabilizing nature of a negative pressure gradient
and of cooling of the wall on the lsmhar boundary layer. W examples
also indicate that the pressure gradient here mcdifies the effect of Mach
nuder on laminar stabili~ for a fixed ratio of wall temperature to
reference free-stream

Polytechnic JJlstitute
Brooklyn, N. Y.,

temperature.

of Brooklyn,
April 7, 1~.
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APPmIx

.DEZRMWWI ON OF SEPARA!I’IONPOINT

When the assumptions that the Prandtl number is 1 and that the
coefficient of tiscosi@ is proportional to the absolute temperature
(eq. (1)) are made, differentiation of the mmnentmn partial differential
equation with respect to t yields the following rektion at the wall
(cf. eq. (2’j)of ref. 2), where u = v = O:

(Al)

Moreover, the energy prtial differential equation sad Clifferentiation
of this equation with respect to t yield the following relations for
a uniform wall temperature (cf. eqs. (26) and (27) of ref. 2) :

where

H

Era equations (A2) and
point, that is, where

(a?E/%t2)o = o ]

(#H/a@ ).= O
J

= (u2/2) + c#

(A3) it follows

(aupt) ~. o

the relation

(a%ja.2)o. o

holds. Differentiating
with respect to t and

the momentum partial
takinR values a% the

(A2)

(A3)

that at the separation

(A4)

(A5)

&LffWential equation twice
separation point, it is

found, with the use of equations (Al) to (A5), that

(a’&tk)o. o (A6)

which is in accord with equation (19) of the main text.

.

——. .
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!l?k seventh-degreevelocity profile in T satisfying condition (A6)
in addition to the boundary conditions (viz., eqs. (22) to (28) of ref. 2)
satisfied in the present analysis by the

~=(3. &5+7T6 -37)+

sixth-degree profiles is

~(@+&~5+

376 - T7
)(

+a3-$r+ T3 - 3T5 + 46 - T7
5 )

where y is given by equation (6), while

+j = (%%)/(%)

(A7)

(A8)

The COmti~ (aupt) o = O will, according to equations (A7) and (A8),

lead to equation (20) of the main text.

~ inserting the profile (A7), in conjunction with eqution (A8),
into the momentum integral-clifferential equatian (11) of reference 2
and assming, as in reference 2, that the ~ and bl terms in F1

and F2 (defined in ref. 2) may be replaced by constant values, an
ordinary differential equation of the same form as equation (9) of the
main text is obtained, except that ~1 and ~ (now written as ~h .

and ~) are now given by equations (24) of the main text, while the
factor 2 on the right side of equation (9) is replaced by 7/4. Com-
parison, accordingly, with the solution of equation (9) (eq. (7)), leadE
to equation (23) of the main text. Since the chief purpose is here the
location of the separation point, the constant value of a2 (as in

ref. 4) is now chosen as that at the separation point and hence as that
given by equation (20) of the main text.

Ih case the region of adverse pressure gradient starts at some
point ~ = ga downstream of the leading edge, then equation (23) can

still.be applied directly in calculating the separation point. Greater
accuracy, however, might be obtained in such a case by applylng equa-
tion (23) only for the region of adverse pressure gradient. For this
Purpose> equation (23) must be modified to satisfy the boundary condi-
tion A = ~ at k = ~a. Thus,

%“
Sa

(A9)
I

.-— —. —_. . ____ .—— ___ ______
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where

NACA TN 3296

and where & can ‘beobtained as the value pf A at 5 = ~a ~ased on

eqution (7) for the reaon (O~ ~ < ~a) of favorable pressure gr~ent.

— ——
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TABLE I
.

31

VALUES OF ‘1’EMe13MruRE-VISCOSITY FACTOR C

VERsus

MACHNUMBER m wm-TEMP~ RATIo

% 1.5 3.0.

Gl 0.3 0.5 0.7 “0.3 0.5 0.7

c 1.097 1.057 0.997 1.033 0.923 0=834

E’

o
.1
.2

::

.5

.6

:i
.9

1.0

TABLE II

V.S OF A/C ALONG AIXIWIL OF FIGURE 1

1.5

~=0.31q=0.51G1 =0.7

0
3*73
7.49

IL32
15.22
19.23
23.35
27.56
31.86
36.41
41.01

;.74
7.49

=.28
15.11.
19.01
23.01
27.09
31.22
35.56
39.95

;.76

15.02
18. @
22.72
26.67
30.67
34.82
39.01

3.0

~=o.31G1=o.51~=o.7

;.92
8.27

13.07
18.34
24.I2
30.41
37.29
44.50
52.30
60.4g

;.94
8.28

13 ● 03
18.24
23.91
;:. :

43:70
51.29
59.18

;. 95
8.28

13.01
18.14
23.70
29.71
36.18
43.00
50.32
57=90

-.. ..— .—— .—. .——— ——— .—— —-— — —
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TABLE III

VALUES OF %1/(1 - ~) ALUNG AIRFOIL OF FIGURE 1

b~/(1 - G-J at~af -

3.0E’ 1.5

~ = 0.5

2.000
1.975
1.953
1.935
1.921
1.910
1.901
L 895
L 890
L 887
1.886

Gl = 0.7 G’1= 0.3

2.OCQ
1.969
1.945
1.927
1.910
1.897
1.889
1.882
L 879
L 877
L 876

2.000
1.980
L 963
1.947
1.935
1.92A
L 916
1.91Q
1.9Q5
1.902
1.900

2.000
L 976
L 958
1.939
1.924
1.913
1.904
L 898
1.894
L 891
1.890

2.000
1.974

1.949
1.929
1.913
1.900
1.900
1*w
L 879
L 879
1.876

0
.1
.2

:;

2.000
L 978
1.959
1.944
1.932
1.923
1.914
1.gc8
1.*
1.901
1.898

.9
1.0

TABLE Iv

VALUES OF -~ AIONG AIKFOIL OF FIGURE 1

-* at

3.0

G1 = 0.3 Gl = 0.5 Gl = 0.7

1.5

G1 = 0.7G1 = 0.3 Gl = 0.5

0 0
.1802
.3$8
.5?9
.6816
.83c6
.9696

1.0949
1.2002
I..29=
1.3565

0
.2536
.4972
.7296
.9492

0
.1

.2

.3

.4

0
.12(y5
.2315
-3351
.4309

0
.2017
.359
.5567
.7130
.8574
.9928

1.11.40
1.22-p
1.3305
1.4231

0
.2840
.5414
-7777
.9920

1.1890
1.3721
1.5355
1.6877
1.8239
1“9454

. 10T(

.2128
;;L4J

1. i527
1.3408

.5

.6
.5202
.6044
.6+98
.7513
.8175
. 876A

.5029

.5881

.6669 I. 5b98
I. 6531
1.7730
1.679

.7

.8
-9

1.0

.7331

. 7@9

.8391

.

r
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.

TABLE v

SEPARATION POIN’l?~ AS A FUNCTION OF

MACH NUMBER FOR ZERO HEAT~

(~=l)ANDu~/% =1-g “

E*=P for w of -

0 I 1 I 3 I 10

Based on eqs. (22) to (24) 0.122 0. =3 0.0768 0.023

Based on methcd of
Stewartson (ref. 15) O.MO O.11.o 0.077 0.024

— ..- ..— —— —— ..— — —.. —-——
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TABm VI

MINIMUM CRITICAL REYNOLOS NUMBERSOF IAMINM?

BOUNDARY IAYEROVER AIRFOILIN FIGURE1

AND OVER AFIAT PIATE

(a) over airfoil (~’ = 0.8)

q) Mm

1.5 1.662

2.0 2.184

1.1

1.0
.93
.91
.90
.888

%=%0

1.5

1.595
1.450
1.348
1.320
1.305
1.2e$

1.0
-9
.8
.77
.737

2.0

1.708
1.553
1.443
1.413
1.397
1.379

2.69 X 1(+

6.58
48.6

128.6
261.3

m

1.8
1.62
1.44
1.3%
1.327

1.9.4 0.217
1.74 .389
1.55
1.49 ::&?
.1.43 ~

%

1.2
1.0

.95

.90

.75

: E66

1.00
.90
.75
.70
.683

(b) over fht pkte

Top% To/% %,cr
1.740 1.740 0.0804 X ld
1.450 1.450 .282
1.378 1.378 .426
1.305 1.305 .641
1.088 1.088 16.68
1.044 1.044 322.2
1.039 1.039 -

1.8
I.62
1.35
I.26
1.229

I.. 8 0.0506
I. 62 :4y13
1.35
1.26 I. 648
1.229 m

Rm,cr

;.5J x 1(+

46:86
1.24.o
251.9

m

0.201
.362

I.653
4.137
co

%, cr

0.0804 x Id
.282 .
.426
.641

16.68
322.2

w

0.0506
.0903
.481

1.648
m

c

.
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